数学是一门包含了很多知识的学科,研究数量、机构、变化、空间等,一直以来都是留学申请专业的热门,数学专业人才在目前的新兴领域与常青领域的需求持续走高,如人工智能产业、IT和金融等领域。数学专业作为一个研究性、学术性极强的专业,学习难度可以说是位于金字塔顶层级别里,当同学们遇到无法完成的作业或者考试时,请让Topmask 数学代考服务,为您排忧解难。
数学代考/线上代考服务简介
在这里,数学代考、数学作业代写、数学网课代修是优势科目,我们承诺100%通过保障,安全快捷有保障,让您高枕无忧,不再有挂科的烦恼,也不用再担心数学作业该如何去完成。
100%顶级数学专家
全球Top50名校+国内985/211毕业硕博生组成的3500+师资团队,拥有扎实的专业基础和丰富的项目经验,各类数学作业和数学考试都能轻松Handel!
100%高分保障
坚持质量第一,原创有保障,准确率高,复杂公式与计算均可解决,还可以提供解题思路与分析的讲解。
24/7快速响应
微信客服与专业助教24/7无休在线,代写过程中的任何问题,随时反馈,及时解决;诚信服务,质量优先,代写结束后14天内均享受免费售后服务,未达到约定成绩100%原路退款。
1v1直接沟通学霸
我们支持与老师直接沟通数学代写需求,在周期较长的项目中,根据需求定期组织辅导与沟通,让您随时了解进度,反馈问题,保障任务顺利进行。

Math代考常见问题解答
Q:数学代考的详细服务流程是怎么样的?
1、将准确考试信息(当地时间,北京时间,考试范围,语言要求等)和相关学术材料提交给微信客服;客服当日分配助考团队,提供报价。
2、考试当天助教会提前一个小时、半小时、十分钟再次确认靠前情况;助教协助老师熟悉考试流程和注意事项。
3、考试完成后,助教会持续跟进出分进展,成功出分后客户支付尾款;若出现异常情况,团队第一时间开启售后保障方案。
Q:如果考试没有达到保分要求怎么办?
万一出现出分结果不及格的情况,客服会主动联络您沟通售后事宜,并原路100%退款。
Q:数学代考成功率是多少?
就过往服务经验来看,只要严格按注意事项和要求互相进行配合,Online Exam代考通过率是很高的,实际成功率可达到97%以上。
Q:数学Exam代考保分最高能达到多少?
具体保分条件主要取决于同学们的期望的分数范围,我们不设置上限,专家团队成员有足够的学术能力冲击高分,我们建议根据您的具体情况考取分数,以免引起老师怀疑。
下面是一个编程原理的数学考试高分案例,更多案例联系微信客服了解噢:
Question 1 Numerical derivative
The object of this exercise is to create functions which can compute their own numerical derivative. Given a real-valued function f of one real variable, and a small δ>0, the derivative of f at a point x can be approximated by the central difference approximation:

1. (a)
Create a package derivative containing a module derivative.py . Make the packages in this repository installable. You will aid your own completion of the exam by installing this package in editable mode.
1. (b)
(i)
Create a class derivative.derivative.Function whose constructor takes a function fn as an input and stores it. This is the function we will evaluate and whose derivative we will take.
(ii)
Implement the __call__ special method on Function to take a single argument (the value of x), evaluate fn on that input, returning the result.
1 (c)
(i)
Implement a subclass of Function called CentralDifferenceFunction . The constructor of this class should take fn and a scalar parameter delta . This constructor should call the superclass constructor to store fn , and it should store delta on the object instance.
(ii)
Implement a method CentralDifferenceFunction.derivative which takes two parameters, x and delta . The delta parameter should be made optional by giving it a default value of None . The derivative method should return the central difference approximation to the gradient of fn at x . If delta is passed to the method, then this value should be used in the calculation. If the argument is omitted then the value of delta passed in to the constructor should be used.
1 (d)
(i)
Implement a new subclass of Exception named ConvergenceError . The new exception does not need to have any new methods or attributes.
(ii)
Implement a subclass of CentralDifferenceFunction called AdaptiveCentralDifferenceFunction . The constructor of this class should have parameters fn , delta , eps , and max_its . The constructor should call the superclass constructor to store fn and delta , and should store eps and max_its directly on the object.
(iii)
Implement a method AdaptiveCentralDifferenceFunction.derivative which takes x as an argument. This function should call the superclass derivative method for a sequence of values of delta . The first value of delta should be the one passed to the class constructor. The next value of delta should be half the first value. This counts as the first iteration. The method should keep calculating more estimates of the derivative, each time with delta half that of the previous time. This sequence stops when the first of the following conditions is satisfied:
1. The absolute value of the difference between successive derivative approximations falls below eps . In this case the iteration has succeeded and the last calculated approximation should be returned.
2. The number of iterations exceeds max_its . In this case, the iteration has failed and the method should raise ConvergenceError with the message “Failed to converge within the allowed number of iterations.”