TopMask在保证提供专业高质量的CS代写服务的同时,CS作业的类型很多,其中包括Java代写、python代写、CS代写、IT代写、程序代码代写、CS代考等。在计算机专家查看具体要求,评估难度,并结合截止日期,才能提出价格。欢迎联系我们的微信客服获取报价和获取优惠。
如何能够找到合适的CS代写?
1.同学朋友推荐
如果身边有同学有找代写的经验,可以让同学给你推荐。一般朋友推荐的机构还是靠谱的,有事实精力做证明。而且同学能够推荐给你肯定是比较满意的。
2.谷歌搜索、找论坛
更多的留学生是通过在谷歌上搜索关键词,如“计算机作业代写”来寻求代写服务,或者在评论网站、论坛中找资源,可供选择机构很多。但资源多了就会鱼龙混杂,需要提供资金的辨别能力。
3.看网站的内容和案例
靠谱且有规模的代写机构都是有官网的,打开代写机构的官网,查看对方的服务内容和以往的案例、代写团队资源等有效信息。最好的方式是联系网站的在线客服进一步咨询,并且咨询一些比较专业的问题来判断对方的水平是怎么样的,这样可以帮助你更深入地了解这个机构。
留学生CS代写服务过程
Step1:添加微信,提交需求
添加微信:maxxuezhang,提交详细需求。我们会根据客户的需求匹配最合适的同专业的导师。
Step2:获取报价,支付定金
导师收到需求后,会根据综合情况给出报价,客服将会及时告知客户。随后客户选择方便的方式付款。
Step3:交付成果,完成付款
完成任务后进行原创度检查,客户审核满意,支付余款。有任何疑问,随时联系客服专员。
Step4:免费售后,获取高分
提交作业并拿到理想的成绩。有需要的话, 可以随时联系导师,让他按您的要求进行修改。
留学生CS代写常见问题解答
Q:你们能提供代码的运行效果吗?
A:我们会提供完整的代码或者代码运行的效果视频,如果有进一步的需要,我们还会提供辅导课程,远程帮忙调试。
Q:在订单进行过程中,我能更换导师吗?
A:是可以的,但需要提前沟通并告知更换的原因,共同沟通解决方法。
Q:我需要怎么跟进我的订单进程?
A:我们的教务和客服会全程跟进你的订单进程,确保按时完成任务。
Q:计算机作业会有售后吗?
A:我们会建立一个专属的独立服务群,可直接与程师们联系,交付程序后,一般是7天售后时间,期间免费调整代码。
下面是一个Python Assignment代写实例:
Given the code below:
# Main Program
n1 = int(input("Enter your first positive integer: "))
n2 = int(input("Enter your second positive integer: "))
s = n1 + n2
lst1 = decimalToBinary(n1)
print("The binary representation of", n1, "is", lst1)
lst2 = decimalToBinary(n2)
print("The binary representation of", n2, "is", lst2)
lst3 = binaryAddition(lst1, lst2)
print("The binary addition of", n1, "and", n2, "is", lst3)
n3 = binaryToDecimal(lst3)
print("Converting the binary to decimal gives", n3)
if s == n3:
print("Since", s, "==", n3, ", it seems we did good job.")
else:
print("Since", s, "!=", n3, ", something went wrong.")
print("----------------------")
n = int(input("Enter a positive integer: "))
lst = decimalToBinary(n)
print("The binary representation of", n, "is", lst)
result = algo(lst)
print(lst, "became palindrome: ", result[0], "after ", result[1], "iterations")
define the four functions decimalToBinary, binaryAddition, binaryToDecimal and algo. The description of
each function is as follows:
o def decimalToBinary(n):
• This function takes a positive integer n > 0 as an argument and returns a List of integers (The
list elements must be integer type) where each element of the list is a binary digit, 0 or 1
obtained by the conversion of the integer argument n to binary.
You are not allowed to use the built-in function bin().
For example,
decimalToBinary(3) → [1, 1]
decimalToBinary(123) → [1, 1, 1, 1, 0, 1, 1]
decimalToBinary(2312) → [1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0]
o def binaryAddition(lst1, lst2):
• This function takes two list arguments lst1 and lst2 representing two binary numbers and
returns a list of integers whose elements are obtained by the addition of the two binary
numbers in binary addition format.
• How to add two binary numbers? Binary addition is like decimal addition, except that it carries
on a value of 2 instead of a value of 10.
0 + 0 = 0
1 + 0 = 1
0 + 1 = 1
1 + 1 = 10 (this is 0 carry 1)
1 + 1 + 1 = 11 (this is 1 carry 1)
To add two binary numbers, we simply add together the corresponding digits in each binary
number from right to left and if the sum is greater than what fits in a single digit, we carry a 1
into the next column.
For example,
1 1 1 1 1 ← carries
1 1 0 1 0 1
+ 1 1 1 0 1
1 0 1 0 0 1 0
We start by the first column from the right:
1) First column: 1 + 1 = 0 (with carry 1)
2) Second column: 0 + 0 + 1 (carried) = 1 (no carry)
3) Third column: 1 + 1 + no carry = 0 (carry 1)
4) Fourth column: 0 + 1 + 1 (carried) = 0 (carry 1)
5) Fifth column: 1 + 1 + 1 (carried) = 1 (carry 1)
6) Sixth column: 1 + 1 (carried) = 0 (carry 1)
7) Seventh column: 1 (carried)
binaryAddition([1,1,0,1,0,1], [1,1,1,0,1]) → [1,0,1,0,0,1,0]
binaryAddition([1,1,0,1,0,1], [1,1,1,0,1]) → [1,0,1,0,0,1,0]
o def binaryToDecimal(lst):
• This function takes a list lst representing a binary number and converts it to decimal and
returns the decimal number.
For example,
binaryToDecimal([1,0]) → 2
binaryToDecimal([1,0,1,0,0]) → 20
binaryToDecimal([1,0,1,1,1,0,1,1,0,0,1,0]) → 2994
binaryToDecimal([1,1,1,1,1,0,1,1,1,0,1,1,0,0,0,0]) → 64432
o def algo(lst):
• Below is an algorithm that produces palindromic numbers for most binary numbers: Let n be a
binary number:
• [STEP 1] If the number is palindromic STOP. If not, go to step 2
• [STEP 2] Reverse the digits
• [STEP 3] Add the reverse to the original number (binary addition), the sum is your new
number, go to step 1
For example,
1011 → 11011
1. 1011 is NOT palindromic
2. 1011 reversed is 1101
3. 1011 + 1101 = 11000
4. 11000 is NOT palindromic
5. 11000 reversed is 00011
6. 11000 + 00011 = 11011 is palindromic after 2 iterations
• This function takes a list lst representing a binary number and returns a nested lists with two
elements:
▪ First element: the resulting palindromic binary number,
▪ Second element: number of iterations required to get to a palindromic number
by the procedure mentioned above. Throughout this procedure, if after 10 iterations the
number is still NOT palindromic your function must return [None, -1].
For example,
algo([1,0]) → [[1, 1], 1]
algo([1,0,1]) → [[1, 0, 1], 0]
algo([1,0,1,1]) → [[1, 1, 0, 1, 1], 2]
algo([1,0,1,0,0]) → [[1, 1, 0, 0, 0, 1, 1], 5]
algo([1,0,1,1,0]) → [None, -1]